\(\int (a+a \cos (c+d x)) (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx\) [462]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 31, antiderivative size = 110 \[ \int (a+a \cos (c+d x)) (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\frac {2 a (A+B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 a (3 A+B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a B \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}} \]

[Out]

2/3*a*B*sin(d*x+c)/d/sec(d*x+c)^(1/2)+2*a*(A+B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(
1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+2/3*a*(3*A+B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2
*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 110, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.194, Rules used = {3039, 4081, 3872, 3856, 2719, 2720} \[ \int (a+a \cos (c+d x)) (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\frac {2 a (3 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a (A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a B \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}} \]

[In]

Int[(a + a*Cos[c + d*x])*(A + B*Cos[c + d*x])*Sqrt[Sec[c + d*x]],x]

[Out]

(2*a*(A + B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*a*(3*A + B)*Sqrt[Cos[c +
d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*a*B*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3039

Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Csc[e + f*x])^(p - m - n)*(b + a*Csc[e + f*x])^m*(
d + c*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] && I
ntegerQ[m] && IntegerQ[n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 4081

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.)
 + (A_)), x_Symbol] :> Simp[A*a*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*n)), x] + Dist[1/(d*n), Int[(d*Csc[e + f*x
])^(n + 1)*Simp[n*(B*a + A*b) + (B*b*n + A*a*(n + 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B},
 x] && NeQ[A*b - a*B, 0] && LeQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \int \frac {(a+a \sec (c+d x)) (B+A \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 a B \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}-\frac {2}{3} \int \frac {-\frac {3}{2} a (A+B)-\frac {1}{2} a (3 A+B) \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx \\ & = \frac {2 a B \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+(a (A+B)) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{3} (a (3 A+B)) \int \sqrt {\sec (c+d x)} \, dx \\ & = \frac {2 a B \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\left (a (A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx+\frac {1}{3} \left (a (3 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 a (A+B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 a (3 A+B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a B \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 1.50 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.35 \[ \int (a+a \cos (c+d x)) (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\frac {2 a e^{-i d x} \sqrt {\sec (c+d x)} (\cos (d x)+i \sin (d x)) \left ((3 A+B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-i (A+B) e^{i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )+\cos (c+d x) (3 i (A+B)+B \sin (c+d x))\right )}{3 d} \]

[In]

Integrate[(a + a*Cos[c + d*x])*(A + B*Cos[c + d*x])*Sqrt[Sec[c + d*x]],x]

[Out]

(2*a*Sqrt[Sec[c + d*x]]*(Cos[d*x] + I*Sin[d*x])*((3*A + B)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] - I*(A
 + B)*E^(I*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))] + C
os[c + d*x]*((3*I)*(A + B) + B*Sin[c + d*x])))/(3*d*E^(I*d*x))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(320\) vs. \(2(148)=296\).

Time = 8.61 (sec) , antiderivative size = 321, normalized size of antiderivative = 2.92

method result size
default \(-\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, a \left (4 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-2 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(321\)
parts \(-\frac {2 a A \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}+\frac {2 \left (a A +B a \right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}-\frac {2 B a \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (4 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(455\)

[In]

int((a+cos(d*x+c)*a)*(A+B*cos(d*x+c))*sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a*(4*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+3*
A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*A*(sin
(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-2*B*cos(1/2*d*
x+1/2*c)*sin(1/2*d*x+1/2*c)^2+B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/
2*d*x+1/2*c),2^(1/2))-3*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+
1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)
^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.29 \[ \int (a+a \cos (c+d x)) (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\frac {2 \, B a \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - i \, \sqrt {2} {\left (3 \, A + B\right )} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} {\left (3 \, A + B\right )} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 i \, \sqrt {2} {\left (A + B\right )} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 i \, \sqrt {2} {\left (A + B\right )} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{3 \, d} \]

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

1/3*(2*B*a*sqrt(cos(d*x + c))*sin(d*x + c) - I*sqrt(2)*(3*A + B)*a*weierstrassPInverse(-4, 0, cos(d*x + c) + I
*sin(d*x + c)) + I*sqrt(2)*(3*A + B)*a*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*I*sqrt(2)
*(A + B)*a*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*I*sqrt(2)*(A
+ B)*a*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/d

Sympy [F]

\[ \int (a+a \cos (c+d x)) (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=a \left (\int A \sqrt {\sec {\left (c + d x \right )}}\, dx + \int A \cos {\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}}\, dx + \int B \cos {\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}}\, dx + \int B \cos ^{2}{\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}}\, dx\right ) \]

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)**(1/2),x)

[Out]

a*(Integral(A*sqrt(sec(c + d*x)), x) + Integral(A*cos(c + d*x)*sqrt(sec(c + d*x)), x) + Integral(B*cos(c + d*x
)*sqrt(sec(c + d*x)), x) + Integral(B*cos(c + d*x)**2*sqrt(sec(c + d*x)), x))

Maxima [F]

\[ \int (a+a \cos (c+d x)) (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {\sec \left (d x + c\right )} \,d x } \]

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)*sqrt(sec(d*x + c)), x)

Giac [F]

\[ \int (a+a \cos (c+d x)) (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {\sec \left (d x + c\right )} \,d x } \]

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)*sqrt(sec(d*x + c)), x)

Mupad [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x)) (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\int \left (A+B\,\cos \left (c+d\,x\right )\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\left (a+a\,\cos \left (c+d\,x\right )\right ) \,d x \]

[In]

int((A + B*cos(c + d*x))*(1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x)),x)

[Out]

int((A + B*cos(c + d*x))*(1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x)), x)